Biomass as a possibility for district heating in Hamburg

Burkhard Warmuth

Hamburg, 1st December 2020

Wärme Hamburg GmbH in a nutshell

In 1894, the

Hamburg City Hall becomes the first district heating customer in Hamburg

The Hamburg district heating network has over

860 km of pipelines and **12** generation plants

Wärme Hamburg provides heating service to some

~ 500,000 residential units

Approx. **22%** of Hamburg's useful heat is distributed through our network

Future goals

- Contribute to Hamburg's climate targets
 - Coal phase out until 2030 (latest)
 - Growth
- Attractive products
 - Price
 - Quality
- Stable company value
- Reliable system security of supply

The largest contribution to Hamburg's Energy Transition: New district heat generation in Hamburg – share of renewables up and reducing CO₂

-> 2025

"Energiepark Hafen"

- Contribution to the coal phase-out:
 Wedel phase out by 2025
- Stepped-up use of climate-neutral heat
- Power plant will be replaced by interconnected system
- Substitute solutions are novel and innovative, including sector coupling

-> 2030
Fuel conversion Tiefstack

- Reliable and cost-efficient plant
- Resource-saving dispatch for heat production
- Low-carbon high share of climate-neutral energies
- Sector coupling through available latest-state-of-theart components

-> 2030+ Future

- Heat supply to be modularised even more
- Decarbonisation through sector coupling, synthetic fuels and other renewable heat sources

"Energiepark Hafen" followed by the transformation Tiefstack - potential biomass utilisation while developing the portfolio

"Energiepark Hafen" followed by the transformation Tiefstack - potential biomass utilisation while developing the portfolio

Potential plant usage, biomass delivery & underlying conditions

- Potential biomass utilisation
 - Today: 2 hardcoal boilers (290 MW_{th} 194 MW_{el} 506 MW_{fuel})
 - (Partial) Option New build biomass boiler ?
- Biomass delivery
 - Port but not for sea ships
 - Handling of biomass in the harbour
- Availability of space questionable

Growth

- Biomass utilisation
 - New build biomass boiler (CHP or HOB),
 - small scale solutions
- Biomass delivery
 - Via harbour
 - Downstream logistics and storage needed
- Space for biomass handling necessary
- Transportation induced traffic and emissions questionable

Type

- Pellets
- Wood chips
- Other

Quality

- Heating Value
- Composition
- Ash content
- Burning behaviour

Transportation

- Frequency
- Amount
- Storage
- Unloading

Various sources of biomass supply can be considered – but they have to meet certain criterias

Criterias

Sustainability

- CO₂ footprint
- Bio diversity
- Social acceptance
- Ethic standards

Reliability

- Availability
- Quantity
- Quality

Price

- CIF Hamburg
- Heat price compared to other competitive technologies

Future district heating portfolio: Reduction of CO2

- chances for biomass in mid and peak load

Perspective of biomass demand in the heating portfolio

potentials fuel capacity Substitution Coal Tiefstack Share of biomass usage to be determind in following prozess

Decarbonisation of portfolio

Growth opportunities

Other production technologies & further third party potential

Further potential of peak and average load for substitution, tbd

Up to 150 MW (mostly peak capacity)

Further increase of production/technology diversity (e.g. industrial waste heat, etc) in order to limit the future need for resource consumption

Three scenarios for feasibility of Namibian Bushwood

Small < 25.000 t

Medium < 150.000 t

High > 150.000 t

First glimpse: biomass characteristics of Namibian bushwood

Namibian bushwood

- Bush biomass is virgin wood
- Bushwood is residue of landscape management
- Chemical composition depends on the growth, soil and harvesting

Utilisation of bushwood

- Most parameters are in the limits of typical wooden biomass
- First evaluation: Biomass (wood chips) is suitable for utilisation in boilers
- Parameters have to be controlled for graded wood chip (e.g. chlorine, nitrogen, and ash)

Focus on pellets

- Characteristic of pellets must be analyzed (e.g. heating value, size, ash)
- Stable pellets seems to possible
- For graded pellets ash content has to be reduced and parameters have to be controlled

Für die Menschen, für die Stadt.